
Abstract  Areas of lakes that support emergent aquatic vegetation emit disproportionately more methane 
than open water but are under-represented in upscaled estimates of lake greenhouse gas emissions. These 
shallow areas are typically less than ∼1.5 m deep and can be detected with synthetic aperture radar (SAR). 
To assess the importance of lake emergent vegetation (LEV) zones to landscape-scale methane emissions, we 
combine airborne SAR mapping with field measurements of vegetated and open-water methane flux. First, 
we use Uninhabited Aerial Vehicle SAR data from the NASA Arctic-Boreal Vulnerability Experiment to map 
LEV in 4,572 lakes across four Arctic-boreal study areas and find it comprises ∼16% of lake area, exceeding 
previous estimates, and exhibiting strong regional differences (averaging 59 [50–68]%, 22 [20–25]%, 1.0 
[0.8–1.2]%, and 7.0 [5.0–12]% of lake areas in the Peace-Athabasca Delta, Yukon Flats, and northern and 
southern Canadian Shield, respectively). Next, we account for these vegetated areas through a simple upscaling 
exercise using paired methane fluxes from regions of open water and LEV. After excluding vegetated areas 
that could be accounted for as wetlands, we find that inclusion of LEV increases overall lake emissions by 21 
[18–25]% relative to estimates that do not differentiate lake zones. While LEV zones are proportionately greater 
in small lakes, this relationship is weak and varies regionally, underscoring the need for methane-relevant 
remote sensing measurements of lake zones and a consistent criterion for distinguishing wetlands. Finally, 
Arctic-boreal lake methane upscaling estimates can be improved with more measurements from all lake zones.

Plain Language Summary  Lakes are one of the largest natural sources of the greenhouse gas 
methane and are especially common in high latitudes. Shallow, near-shore areas of lakes supporting emergent 
aquatic vegetation emit disproportionately more methane than open water areas but are under-represented in 
broad-scale estimates of lake greenhouse gas emissions. While lake depths are difficult to map from remote 
sensing, emergent vegetation, which typically grows in water less than ∼1.5 m deep, can be detected via radar 
remote sensing. To assess the importance of these areas to landscape-scale methane emissions, we combine 
airborne radar mapping with field measurements of vegetated and open-water methane emissions. Zones 
of emergent vegetation vary regionally and comprise ∼16% of lake area on average. A simple estimate that 
accounts for both open water and emergent vegetation methane emissions results in 21% increased overall lake 
methane emissions estimates. Emergent aquatic vegetation coverage has only a weak relationship with lake size, 
making it hard to predict. Therefore, to better estimate broad-scale methane emissions, we suggest using remote 
sensing to create lake vegetation distribution maps and measuring methane emissions from both vegetated and 
open water zones within lakes.
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Key Points:
•	 �We provide a first quantification of 

emergent vegetation area across 4,572 
lakes in four Arctic-boreal study areas 
using airborne mapping

•	 �Lake emergent vegetation coverage 
varies regionally from 1 to 59% of 
lake area and seasonally to a lesser 
degree

•	 �Accounting for this coverage could 
increase Arctic-boreal lake methane 
upscaling estimates by +21%
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1.  Introduction
Inland waters (lakes, reservoirs, rivers, and wetlands) are the single largest natural source of the greenhouse 
gas methane (CH4) (Saunois et al., 2020). Lakes are estimated to be responsible for ∼24% of all inland water 
emissions, second only to wetlands (Bastviken et al., 2011; Saunois et al., 2020). They emit methane via diverse 
pathways of diffusion, ebullition, transport through aquatic plant tissue, and through a storage flux during turno-
ver and/or ice melt in stratified lakes. Emissions are strongly dependent on temperature, sediment carbon content, 
redox environment, and gas transfer velocity (Bastviken et al., 2004; Wik et al., 2016). Uncertainties in upscal-
ing lake emissions therefore have vast spatial and temporal heterogeneities (Loken et al., 2019; Natchimuthu 
et al., 2016; Saunois et al., 2020; Stephanie et al., 2020).

Unlike for wetlands, there are few process-based models for lake fluxes, so estimates have relied on data-driven 
extrapolations (Saunois et al., 2020). Lake emission upscaling efforts have only recently begun to account for 
lake surface area (DelSontro et al., 2016; Hastie et al., 2018; Holgerson & Raymond, 2016), but it is still rare 
to consider other aspects of morphometry, such as slope, vegetation, and littoral area (Casas-Ruiz et al., 2021). 
“Bottom-up,” or process-based, methane estimates tend to over-predict aquatic methane fluxes compared to 
“top-down,” or inversion-based, models (Saunois et al., 2020), and double-counting of small lakes as wetlands 
caused by mismatch in scale and methods among datasets has been suggested as a possible cause (Thornton 
et  al.,  2016). Small (<0.001 km 2) lakes and wetlands are poorly mapped, especially in Arctic-boreal regions 
containing the world's greatest abundance of lakes (Verpoorter et al., 2014). Indeed, uncertainty in wetland extent 
is frequently cited as the leading cause of uncertainty in bottom-up methane estimates (Zhang, Tian, et al., 2017), 
and errors arising from large-scale extrapolations of heterogeneous wetlands have also been noted (Bridgham 
et al., 2013).

One key challenge to upscaling is the high within-lake spatial variability of methane emissions. Total fluxes 
measured from vegetated (Villa et al., 2021) and shallow (Natchimuthu et al., 2016) zones can be statistically 
greater than those from open water and have been attributed to the majority of whole-lake emissions (Saunois 
et al., 2020). Estimates derived from deep lake centers have been shown to underestimate total flux by 5%–78% 
in select lakes (Natchimuthu et al., 2016). Plant-mediated fluxes can be significant at the landscape scale, for 
example, exceeding peatland emissions in southern Finland by 30%, despite covering only 40% as much area 
(Bergström et al., 2007). Another study of three Finnish lakes found that the vegetated littoral zone produced 
66%–77% of whole-lake emissions (Juutinen et al., 2003). Combined globally, emergent macrophytes are esti-
mated to emit 11% of the equivalent from all open water lakes, rivers, and reservoirs (Bastviken et al., 2011). As 
the most “wetland-like” zone within lakes, littoral zones are important sources of carbon and known methane 
emission hot spots (Bergström et al., 2007; Burger et al., 2016; Huttunen et al., 2003; Juutinen et al., 2003; Larmola 
et al., 2004), with exceptions (Jansen, Thornton, Cortés, et al., 2020). However, littoral zone area is difficult to 
quantify accurately because its extent is classified by light penetration into the water column (Wetzel, 2001) and 
not by characteristics that are easily delineated by remote sensing. In contrast, the extent of emergent macro-
phytes growing in water < ∼1.5 m deep in the upper littoral zone are more easily detected. These plants can act 
as conduits to the atmosphere for methane produced in lake sediments (Colmer, 2003; Dacey & Klug, 1979). 
Their root exudations are also a minor source of acetate, which is consumed by methanogens (methane-producing 
archaea), and their litter also contributes to the sediment organic carbon pool (Christensen et al., 2003; Joabsson 
et  al.,  1999; Ström et  al.,  2005). Previous studies have noted the tendency for small (Bastviken et  al.,  2004; 
Engram et al., 2020; Holgerson & Raymond, 2016; Michmerhuizen et al., 1996) and shallow (Li et al., 2020; 
West et al., 2016; Wik, Varner, et al., 2016) lakes to emit more methane than larger and deeper ones. DelSontro, 
delGiorgio, and Prairie (2018) successfully modeled lake methane concentration as a function of distance from 
the littoral zone, horizontal transport and oxidation, and oxic epilimnetic production, which highlights the 
outsized importance of littoral methane production. Notably, not all properties of littoral zones come from their 
vegetation. Their relative shallowness is also a factor, as depth often prohibits methane ebullition due to water 
overburden pressure (Bastviken et al., 2004; Langenegger et al., 2019), although there are exceptions (Huttunen 
et al., 2003). Shallow waters may also contain distinct sediment organic matter composition and less opportunity 
for microbe-mediated oxidation of dissolved methane (DelSontro et al., 2016). Finally, diffusive fluxes meas-
ured in the littoral zone may be driven by terrestrial inflows (Natchimuthu et al., 2016; Paytan et al., 2015), and 
offshore fluxes are diminished by oxidation during transport (DelSontro, delGiorgio, & Prairie, 2018). Thus, 
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methane emissions in lakes are spatially variable, with highest emissions coming from littoral zones, particularly 
with vegetation.

This challenge of accounting for spatial heterogeneity is exacerbated by lack of data in the littoral or vegetated 
zones (DelSontro, delGiorgio, & Prairie, 2018; Desrosiers et al., 2022). The Boreal–Arctic Wetland and Lake 
Methane Data set (BAWLD-CH4; Kuhn et al., 2021a, 2021b) is the first synthesis study we are aware of that notes 
which part of the lake ebullition fluxes were measured (center, edge, or whole lake). However, only 143 of the 
553 records actually contain within-lake location, and of these, only one was measured from an edge, with 19 
from centers and 123 from whole-lakes. Among lake methane studies, plant-mediated emissions are measured 
least frequently of all lake pathways (Bastviken et al., 2011; Wik, Varner, et al., 2016), along with open-water 
emissions near plants, so methane upscaling estimates in lakes (DelSontro, Beaulieu, & Downing, 2018; Tranvik 
et  al.,  2009) usually rely solely on pelagic diffusion and ebullition (DelSontro, delGiorgio, & Prairie,  2018; 
Desrosiers et  al.,  2022), with biases introduced by insufficient within-lake sampling sites (Wik, Thornton, 
et al., 2016). For these reasons, lake methane measurements are under-represented in vegetated and littoral zones, 
even among the few studies that report sampling location.

Another key challenge to upscaling is that littoral and vegetation coverage in lakes are poorly constrained. Duarte 
et al. (1986) suggested that emergent macrophytes colonize on average 7% of a lake regardless of its area, while 
submerged macrophyte coverage generally declines with area. They list light availability, sediment characteristics, 
and trophic status as key characteristics for macrophyte growth, with slope as the greatest predictor of emergent 
macrophyte coverage. Others have theorized that the percent of a lake's surface area covered with macrophytes 
scales with nitrogen concentration and the inverse of mean depth (Smith & Wallsten, 1986), or scales inversely 
with lake area (Michmerhuizen et al., 1996) or perimeter (Bergström et al., 2007). Mäkelä et al. (2004) similarly 
found that an average of 6% (range: 1%–100%) of total lake area was covered by macrophytes in a sample of 50 
lakes and that total fractional macrophyte coverage per lake steeply declined with lake area. Zhang, Jeppesen, 
et al. (2017) compiled a synthesis database of aquatic macrophytes in 155 global lakes and observed an average 
coverage of 26% (range: 0.000%–100%) with an accelerating decline since 1900.

Remote sensing studies have used both optical and synthetic aperture radar (SAR) sensors to map macrophytes 
in lakes. Optical satellites are better suited to detecting vegetation type, while SAR can detect water even through 
vegetation canopies (Hess et  al.,  1990). Ghirardi et  al.  (2019) used optical Sentinel-2 satellite data to map 
submerged aquatic macrophytes in an Italian lake and noted both inter- and intra-annual variations in aerial 
coverage. Nelson et al. (2006) used Landsat Thematic Mapper imagery to map various types of macrophytes in 
13 lakes in Michigan, USA and found total macrophyte coverage ranging from 5% to 42%. Ganju et al. (2017) 
used air imagery and elevation data to derive the unvegetated/vegetated marsh ratio (UVVR) for tidal marshes, 
which scales with sediment budget and has typical values <0.4. Zhang et  al.  (2018) used TerraSAR-X SAR 
imagery to map macrophytes in nine Brazilian reservoirs and similarly found large spatial and temporal variation 
in coverage. Thus, many remote sensing studies have demonstrated spatial and/or temporal differences in aquatic 
macrophyte cover, yet few have measured total coverage across large geographical areas and numerous lakes. 
Lake macrophyte area statistics, therefore, remain confined to a handful of studies of small numbers of lakes.

Here, we aim to quantify the fractional coverage of emergent vegetation for 4,572 lakes across four Arctic-boreal 
regions in order to assess their potential importance in scaling methane emissions. To estimate coverage, we 
use the canopy-penetrating properties of L-band SAR flown during the NASA Arctic-Boreal Vulnerability 
Experiment (ABoVE) airborne campaign (2017–2019). Although floating-leafed macrophytes are relevant to 
the methane budget, they cannot be reliably detected with this technique due to similar surface roughness with 
water waves and thus are omitted here. Next, we compile paired measurements of methane flux (new data and 
literature) via  all pathways from open water and emergent macrophyte regions of lakes. Finally, we use these flux 
measurements and our remote sensing-derived ranges in emergent vegetation coverage to estimate its impact on 
lake methane emissions. We conclude with discussion of the causes of regional differences, some broader recom-
mendations for landscape-scale methane upscaling, study limitations, and recommendations for future research.
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2.  Study Areas, Data Sources, and Methods
2.1.  Study Areas

The NASA Arctic-Boreal Vulnerability Experiment (ABoVE) campaign is a decade-long effort to measure envi-
ronmental change in the Arctic and boreal regions of western North America via coordinated ground measure-
ments and airborne remote sensing (Miller et al., 2019). Here, we focus on four study areas within the ABoVE 
domain, each corresponding to one or more flight lines from its airborne campaigns:

1.	 �Peace-Athabasca Delta, Alberta, Canada (PAD);
2.	 �Southern Canadian Shield near Baker Creek (CSB), Northwest Territories, Canada;
3.	 �Interior Canadian Shield near Daring Lake (CSD), Northwest Territories, Canada; and
4.	 �Yukon Flats National Wildlife Refuge, Alaska, USA (YF).

These four study areas were chosen because of their high lake density and contrasting geological, hydrological, 
and ecological conditions. The PAD is one of the world's largest inland deltas and is located on the western edge 
of Lake Athabasca (Figure 1). The overall relief of its lowland regions is 11 m, causing numerous marsh-type 
wetlands, mudflats, and lakes, many of which are recharged by the Athabasca River (Pavelsky & Smith, 2008), 
and more rarely, by ice-jam floods in the Peace River (Timoney, 2013). These floods can inundate up to 80% 
of the 5,600 km 2 delta (Töyrä & Pietroniro, 2005; Wolfe et al., 2006), while in typical years, 26% is covered by 
intermittently-inundated wetlands (Ward & Gorelick, 2018). It is a Ramsar Wetland, UNESCO World Heritage 
site, and home to numerous endemic species of birds, fish, and mammals including the endangered whooping 
crane and the largest remaining herd of wood bison (Parks Canada, 2019). The two Northwest Territories study 
areas (CSD, CSB) are located on the Canadian Shield, the world's largest deposit of Precambrian-age bedrock 
and source of the oldest known terrestrial rocks (Slaymaker, 2016). Deglaciated only nine thousand years ago and 
with a rocky, sparse surface drainage pattern, the Shield is also the world's most lake-rich region and contains 
many peatlands (Slaymaker,  2016; Spence & Woo,  2006). CSB is underlain by discontinuous permafrost, 

Figure 1.  Location map of study areas (YF = Yukon Flats; CSD = Canadian Shield, Daring Lake; CSB = Canadian Shield, 
Baker Creek; PAD = Peace-Athabasca Delta). Study area boundaries (red polygons) are derived from intersecting UAVSAR 
airborne flight coverage with physiographic boundaries. Major water bodies are shown in blue; Canadian Shield with 
stippling, and the northern tree line limit (Brown et al., 2002) in green.
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while CSD crosses the tree line and contains a transition to continuous permafrost and the tundra/taiga ecotone 
(Figure 1). The YF is underlain by discontinuous permafrost in alluvial soils and contains lakes of various hydro-
logic connectivity to the Yukon River and its tributaries (Anderson et al., 2013; Johnston et al., 2020). Like the 
PAD, the YF has flat topography, permitting seasonal flooding during the early summer to cover large areas, 
and it is a source of both lateral riverine and water-air carbon fluxes (Striegl et al., 2012). All four study areas 
are home to multiple indigenous and First Nation communities, as well as the city of Yellowknife (CSB)  and 
numerous smaller settlements.

2.2.  Data Sources

2.2.1.  Airborne Polarimetric SAR

L-band SAR data from the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) were obtained in 
multi-look ground-projected format (GRD) and reprojected to ∼5.5 m spatial resolution (NASA/JPL, 2017–2019) 
on the ABoVE Science Cloud computing environment. With a wavelength of 23.8 cm, UAVSAR has been used 
extensively for vegetation mapping and inundation detection, including in lowlands or deltas with flooded vege-
tation (Ayoub et al., 2018; Jensen et al., 2021; Z. Zhang, Ni, et al., 2017). All available ABoVE UAVSAR flight 
dates from non-contiguous days during summers 2017–2019 were used. Both early (June) and late (August–
September) summer images were acquired by UAVSAR in 2017, and only late summer/early autumn dates were 
imaged in 2018 and 2019.

2.2.2.  Water and Land Cover Maps

Several ABoVE land cover data sets were referenced to help build a land cover training data set for UAVSAR 
(see Section  2.3.1). High-resolution imagery and derivative water masks were obtained from the AirSWOT 
color-infrared camera (Kyzivat et al., 2018, 2019, 2020), supplemented by high-resolution satellite imagery from 
Maxar (https://evwhs.digitalglobe.com/myDigitalGlobe/). Two satellite-based land cover maps available for the 
ABoVE domain were also referenced (Bourgeau-Chavez et al., 2017, 2019; Wang et al., 2019a, 2019b). Although 
these maps use a different classification scheme than our derived UAVSAR classification, they are particularly 
useful for partitioning between trees, shrubs, and graminoid vegetation.

2.3.  Methods

2.3.1.  Land Cover Classification Training Data Set

To estimate lake emergent macrophyte coverage (AEV), a land cover training data set was created using inunda-
tion status from field measurements in 2015 and 2017–2019 and vegetation categories from ABoVE land cover 
maps (Bourgeau-Chavez et al., 2017, 2019; Wang et al., 2019a, 2019b). As part of the field measurements, lake 
and wetland shorelines and vegetation zones were mapped by field teams carrying handheld GPS receivers as 
described in Kyzivat et al. (2019). In YF, airborne GPS tracks from a low-hovering helicopter were used, as no 
suitable ground GPS tracks were available. Contextual photos were also taken by camera, both from the ground 
and from aircraft windows, and by uninhabited airborne vehicles (UAVs). UAV photos were processed into ortho-
mosaics using DroneDeploy web software. All of these measurements were digitized into polygon shapefiles in 
ArcGIS 10.6 denoting 13 land cover classes falling into five broad categories of open water, dry land and three 
types of emergent vegetation (Table 1). The resulting vector data set was used to train and validate a supervised 
classification from the radar data (Kyzivat, Smith, et al., 2021).

2.3.2.  Synthetic Aperture Radar Data Pre-Processing

UAVSAR GRD data for the PAD, YF and CSB flight lines were transformed to the C3 complex covariance 
matrix using PolSAR Pro 6.0 software. Images were corrected for incidence angle-dependent backscatter using 
a fitted exponential function multiplied by the cosine of incidence angle as per Ulander  (1996) and Zhang, 
Ni, et al. (2017). Due to its more rugged topography, CSD was corrected for both incidence angle and terrain 
slope as per the look-up table method of Simard et al. (2016). For all flight lines, a Freeman-Durden polarimet-
ric decomposition was performed. The decomposition comprises a physical scattering model and is commonly 
used to identify scattering mechanism contributions to each pixel (single bounce, modeled as Bragg scattering; 
double bounce, modeled as from a pair of orthogonal surfaces; and volume scattering, modeled as from a cloud 

https://evwhs.digitalglobe.com/myDigitalGlobe/
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of randomly-oriented dipoles) (Freeman & Durden,  1998). Although it is known to overestimate the double 
bounce component (Chen et al., 2014), it is sufficient as an input feature to an empirical, machine-learning based 
classification.

2.3.3.  Land Cover Classification

Each of the three scattering mechanism output bands was used for feature extraction via three moving-window 
filters designed to introduce spatial contextual information for the classifier. The chosen filters were standard 
deviations, offsets oriented along the radar look direction, and an edge-preserving guided filter to reduce speckle 
(Table S.2 in Supporting Information S1). Additional input bands of incidence angle and elevation-derived indexes 
were tested, but ultimately omitted, due to their high spatial autocorrelation, which led to model over-fitting. The 
training class BS was developed specifically to identify bright double bounce scattering between water surfaces 
and steep bank scarps, which would otherwise have appeared as inundated vegetation. SB and WH (defined as 
protruding <20 cm from the water surface, as determined from field measurements) were found to be inseparable 
from OW, so they were treated as open surface water in the analysis. The radar data set was further prepared for 
classifier training by randomly under-sampling the majority training classes and cropping out pixels taken at low 
incidence angles. Incidence angle limits as well as filter parameters (Table S.2 in Supporting Information S1) 
were chosen by trial and error. Finally, pixel values within training polygons in all input bands from the appro-
priate date were extracted, and the results split using stratified sampling into training (85%) and validation (15%) 
datasets with 15 bands each. A description of this workflow, parameter settings, and other technical details is 
provided in Table S.2 in Supporting Information S1.

Finally, a random forests classifier was trained using the TreeBagger function in MATLAB R2017b and evaluated 
using the validation data set via the confusion matrix and Cohen's kappa coefficient. One model was used for the 
areas with incidence angle correction and another for the CSD area with the look-up table correction. The models 
were then applied over the extent of their corresponding study areas for all available dates. The original 13 classes 
were aggregated into the five generalized classes for analysis (Table 1).

2.3.4.  Quality Control and Conversion to Emergent Vegetation Coverage

The derived five-class land cover maps were used to identify emergent macrophyte and open water areas and 
quantify their total landscape coverage. First, maps were clipped to the intersection of all flight lines per study 
area excluding any roads or urban areas, if present. Raster mosaics were created for the PAD and YF, since they 
were acquired in multiple flight lines on most dates (Table S.1 in Supporting Information S1). Next, candidate 
lakes were identified as connected pixel groups of at least five pixels with at least one open water pixel and any 
number of inundated vegetation pixels (or none at all). This criterion permitted inclusion of open water wetlands, 
because there is no reliable way to differentiate them from lakes and ponds. Rivers were removed by applying a 
manually-created river mask, modified from Kyzivat et al. (2019). Lake emergent vegetation (ALEV) were oper-
ationally defined as emergent vegetation classes 8-connected to lakes, with the remaining emergent vegetation 
pixels considered wetlands (AWEV). Although dependent on pixel size, this definition permitted a consistent defi-
nition across all study areas. At this stage, the total landscape coverage of ALEV (wet graminoid, shrub, and forest 
classes) and open water were calculated so they could be compared between dates.

Broad grouping UAVSAR land cover class

Open surface water Open Water (OW), Rough Water (RW), Sedimentary Bar (SB), Wet Herbaceous (WH)

Wet Graminoid Wet Graminoid (WG)

Wet Shrub Wet Shrub (WS)

Wet Forest Wet Forest (WF)

Dry land Dry Graminoid (DG), Dry Shrub (DS), Dry Forest (DF), Bank Scarp Double-Bounce 
(BS), Dry Woodland (DW), Bare Ground (BG)

Note. WG refers to cattails (Typha latifolia), bulrushes (Scirpus spp.), and sedges (Carex spp.), as well as aquatic horsetails (Equisetum fluviatile). WS typically refers 
to willows (Salix spp.). DW refers to a mix of trees and shrubs as defined by Wang et al. (2019b). WH refers to water lilies (Nuphar variegatum), and both WH and SB 
were not separable from the other open water classes. Further details are in the accompanying data publication (Kyzivat, Smith, et al., 2021).

Table 1 
Classification Schema: RW Refers to Wind Roughening at the Time of Acquisition
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Although there is scarce data for methane emission from trees and shrubs along lake shores, we included them in 
the sensitivity analysis because: (a) 69% of ALEV is comprised of graminoid vegetation and this value increases 
to >97% after correcting for double counting (see Section 2.3.5); (b) There is no mixed coverage class, mean-
ing  there is likely still graminoid vegetation present, but hard to detect; (c) Data scarcity makes it hard to account 
for them separately; and (d) Many of the factors that make vegetated water surfaces high emitters are shared 
between vegetation types, such as shallowness, proximity to terrestrial inputs, variable inundation, and presence 
of root systems. In fact, these dynamically-inundated water surfaces with woody vegetation, which could also 
be called littoral swamps, have been shown to emit methane four orders of magnitude greater than temperate 
forest soil uptake (Hondula et al., 2021). This observation underscores the importance of accounting for regions 
of emergent lake vegetation separately from open water, while being sure to exclude any regions otherwise 
accounted for as wetlands (see Section 2.3.5).

To calculate ALEV coverage on a per-lake basis, water bodies smaller than 250  m 2 (0.00025  km 2 or 7–8  px) 
were discarded, since they were too small to consistently resolve and likely included false detections. Although 
hardly affecting total lake area, false detections of lakes would be disproportionately small and thus impact the 
distribution of ALEV. Partially observed lakes intersecting the flight line boundary were discarded as well, since 
ALEV could not be reliably measured. A third category of lakes were discarded if they did not overlap with any 
water pixels in the 2017 AirSWOT color-infrared camera open water masks, which had a slightly narrower 
ground footprint in all study areas. By comparing our UAVSAR retrievals to an independent, optical data set, this 
step removed many falsely-identified lakes caused by classification error. Finally, we calculated the areas of the 
remaining lakes and the fractional area of their emergent vegetation (ALEV) coverages, defined as the proportion 
of pixels in a lake classified as any of the three inundated vegetation classes. For visualization and analysis, these 
data were divided into 24 logarithmically-spaced lake area bins across the four study areas, and the mean, lake 
area-weighted mean, and median ALEV computed for each study area. For each study area, confidence intervals 
were calculated for each of the 24 bins and for the area-weighted means using the 95th percentile of 10,000 boot-
strapped simulated datasets.

2.3.5.  Adjusting Estimate to Avoid Double-Counting Wetlands

Our method for detecting emergent vegetation excludes wetlands based on lack of pixel connectivity to open 
water. Although this method conserves total area and thus does not double-count any pixel to more than one land 
cover class, this partitioning includes open-water and littoral wetlands as parts of lakes. As a result, our estimate 
of ALEV would be too high because it treats areas typically considered to be wetlands (e.g., in methane models) 
as parts of lakes, which is precisely the double-counting between datasets described by Thornton et al. (2016). 
To correct for this over-estimate of total lake area, we obtained two leading global lake datasets, GLOWABO 
(Verpoorter et  al.,  2014) and HydroLAKES (Messager et  al.,  2016) and compared total lake extent between 
the datasets and our own. First, since the global datasets were made at a coarser geographic scale, USAVSAR 
lakes below the appropriate minimum size threshold were excluded (0.002 km 2 for GLOWABO and 0.1 km 2 for 
HydroLAKES). Even so, there were still many more lakes detected by UAVSAR (and some only detected by 
one of the other datasets), so spatial selection in the python package geopandas 0.10.2 (Jordahl et al., 2021) was 
used to exclude any lakes in either data set that did not overlap at least partly with a lake in the data set to which 
it was being compared. This exclusion ensured that we were only comparing areas within commonly-detected 
lakes and not simply assessing lake mapping accuracy between the datasets, which have vastly different scales 
and time domains. Next, both datasets were rasterized to the UAVSAR pixel grid for the corresponding scene, 
typically 5.5 by 5.5 m pixels. Then, for each study area, a confusion matrix was computed between the UAVSAR 
data set and each of the others for all pixels not denoted as land in both candidate data sets. These matrices were 
used to compute the scalar c, which is used in Equation 1 and denotes how much of UAVSAR ALEV falls within 
global data set lakes, with the remainder assumed to already be mapped as wetlands with adequate accounting of 
methane emissions.

The calculation ignores the effects of changing inundation during the 10–20 years between data acquisitions, as 
well as errors arising from the global datasets having less-precise georeferencing. It is also limited to only the 
large lakes that could be compared between datasets. Since these biases would also exist in any modeling study 
using GLOWABO or HydroLAKES, we have made no attempt to correct for them, which would also be beyond 
the scope of this work.
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2.3.6.  Methane Flux Chamber Measurements

Twenty-four methane fluxes were measured at 15 lakes in the PAD during July and August 2019 (Kyzivat, 
Garcia Tigreros, et al., 2021, Figure S.6 in Supporting Information S1). The sampling schedule permitted no more 
than one or two visiting days per lake, so the measurements represent a broad, geographic sampling within the 
PAD at the expense of frequent measurements in any one lake. This sampling approach allowed for better, but still 
limited extrapolation to the 470 UAVSAR-observed lakes in the PAD. In all 15 lakes, single 15-min fluxes were 
taken from an open water region near the lake center via inflatable raft, anchored canoe, or motorboat. In five 
lakes, one to three additional flux measurements were made amidst emergent macrophytes of different species 
(corresponding to the wet graminoid land cover class) short enough to fit into the flux chamber without excessive 
disturbance. The chamber comprised an inverted 25.4 cm tall, opaque white bucket with a 34.2 cm diameter 
opening wrapped with a buoyant skirt made of foam tubing. An infrared greenhouse gas analyzer (EGM-4, PP 
Systems) was used to measure chamber air carbon dioxide (CO2) concentration and circulate chamber air via an 
inlet on the side of the chamber and an outlet in the center of its ceiling. A metal handle was used to steady the 
bucket for a 15-min measurement period. At 0, 5, 10, and 15 min, gas samples were drawn from the chamber's 
headspace through the gas analyzer inlet tubing and injected into evacuated exetainers using a 30 mL polypropyl-
ene syringe fitted with a 3-way stopcock for subsequent analyses of methane concentration.

The samples were analyzed on a Shimadzu GC-2014 gas chromatograph for methane partial pressure within two 
months of collection. Gas flux across the water-air interface was calculated from the rate of change in the cham-
ber methane concentration over the deployment time and chamber area (mol min −1 m −2). The rates of change of 
methane concentrations in the chamber were generally linear with r 2 values greater than 0.90. Given this linear 
response, ebullition was deemed negligible during the measurement periods. Thus, the closed, static chamber 
measurements included both diffusive fluxes from the water surface as well as any plant-mediated fluxes. For 
the three lakes where multiple emergent macrophyte fluxes were taken at one location, measurements from each 
water zone were averaged by lake. Finally, for sites where paired open water versus littoral zone measurements 
were collected, we calculated the vegetated: open water flux ratio (hereafter: flux ratio) as the ratio between 
the average emergent macrophyte and open water measurements for each lake, where open water could include 
submerged macrophytes not detectable with UAVSAR.

During sampling, care was taken not to disturb the sediment, and if any bubbles were observed before or during 
the period, the measurement was aborted. Even so, three measurements were extremely high, implying sediment 
disturbance. To avoid potential bias, these measurements, which were greater than 2.2 standard deviations from 
the median, were discarded (the next-highest value was 0.17 standard deviations from the median). These three 
measurements all came from vegetated sites, so this data omission lessened the impact of emergent vegetation in 
our subsequent analyses.

2.3.7.  Published Flux Chamber Measurements

In addition to our own field measurements, we compiled a synthesis data set of 58 paired flux measurements, 
with the aim of determining the flux ratio for each lake. Six of these measurements corresponded to shallow 
(typically with a 2–4 m cutoff) versus deep regions of the lake, with no mention of adjacent macrophytes, and 
were only included for reference, while the remaining 52 were taken from vegetated versus open water fluxes, 
and were used for subsequent calculations. Each lake pair corresponded to one of 41 distinct lakes or lake regions 
during a single or multi-year-averaged sampling season, published in 21 papers (Burger et al., 2016; Bergström 
et  al.,  2007; Casper et  al.,  2000; DelSontro et  al.,  2016; Desrosiers et  al.,  2022; Dove et  al.,  1999; Engram 
et al., 2020; Elder et al., 2021; Huttunen et al., 2003; Jansen, Thornton, Cortés, et al., 2020; Juutinen et al., 2003; 
Kankaala et al., 2005, 2013; Larmola et al., 2004; Natchimuthu et al., 2016; Ribaudo et al., 2012; Rey-Sanchez 
et al., 2018; Smith & Lewis, 1992; Striegl & Michmerhuizen, 1998; Wik et al., 2013; Villa et al., 2021; Table 
S.3 in Supporting Information S1). Lakes included boreal, tropical and temperate regions and were located in 
Finland, Quebec, Ontario, Alaska, Colorado, Ohio, Minnesota, Italy, the UK, and the Amazon and Orinoco 
river basins. For each paper, the average—whether seasonal or annual—vegetated and open water measure-
ments were recorded and converted, if necessary, to units of mg CH4/m 2/day. Four papers (Burger et al., 2016; 
Casper et al., 2000; Desrosiers et al., 2021; Dove et al., 1999) separately measured each of the three methane 
emission pathways, and most of the others focused on diffusion and/or plant-mediated fluxes. An additional six 
(Huttunen et al., 2003; Jansen, Thornton, Cortés, et al., 2020; Juutinen et al., 2003; Larmola et al., 2004; Striegl 
& Michmerhuizen, 1998; Villa et al., 2021) measured diffusion and ebullition in both lake zones, but did not 



Journal of Geophysical Research: Biogeosciences

KYZIVAT ET AL.

10.1029/2021JG006635

9 of 23

place the flux chamber over plants, thus not accounting for that pathway. One study (Bergström et al., 2007) 
did not provide open water values, which we estimated based on lake area via the relationship of Holgerson and 
Raymond (2016). The data set includes 55 diffusion, 40 plant-mediated, and 17 ebullition pairs, with some meas-
urements counting toward multiple pathways.

The vegetated: open water flux ratio R was calculated for each applicable lake (including our field lakes) and 
divided by a correction factor of 1.33 to account for most measurements being made either during ice-covered 
or ice-free seasons, but not during ice melt, when open-water emissions can temporarily spike. The correction 
factor, averaged from Wik, Varner, et al. (2016) and Denfeld et al. (2018), comes from statements that 23% and 
27% of emissions of ice-covered lakes, respectively, are attributed to ice-melt fluxes. Although the lake upscaling 
calculation by Rosentreter et al. (2021) also uses a spatiotemporal ice-cover correction with the opposite effect 
of the ice-melt pulse correction, we have omitted it here, assuming it affects both vegetated and unvegetated 
areas equally. The adjusted flux ratio R’ therefore comes from measurements of three methane flux pathways, 
collected from both littoral vegetation and shallow open water in all seasons, and reflects adjustments to account 
for unmeasured ice-melt pulses.

Many papers stated the area covered by emergent macrophytes, but if not, Google Earth Pro and QGIS 3.10.11 
were used to digitize, map project, and measure the approximate coverage area, with attention paid to the papers' 
description of the vegetation for context. Coverage areas were assigned an uncertainty value (typically 2%–5%) 
based on interpretation of the methods used or confidence in our digitizing result. Although challenging to 
compare across methodologies, geographic regions, and plant types, this data set served as a best estimate of flux 
ratios from a diverse global sample of lakes.

2.3.8.  Sensitivity Analysis

Likely ranges in whole-lake methane emissions were calculated using the following equation, mapped lake areas, 
and the compiled flux data set:

𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑐𝑐 ∗ 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 ∗ Ω ∗ 𝑅𝑅′ ∗ 𝑓𝑓𝑂𝑂𝑂𝑂 + (1 − 𝑐𝑐 ∗ 𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿 ∗ Ω) ∗ 𝑓𝑓𝑂𝑂𝑂𝑂� (1)

where Ftotal is the total lake flux (mg CH4/day), calculated as a weighted average of vegetated and open water zones; 
c is a scalar ≤1, described in Section 2.3.5, that corrects for potential double-counting of UAVSAR-observed 
emergent vegetation as wetlands contained in modeling datasets (unitless); ALEV is the emergent vegetation area 
as a fraction of total lake area (unitless); Ω is the total lake area (m 2), fOW is the flux per area of open water (mg 
CH4/m 2/day); and R’ is the corrected ratio between emergent macrophyte and open water fluxes per area (unit-
less). All areas and fluxes are expressed relative to the total lake area Ω, and the flux per unit area of open water 
( fOW), both of which cancel out when applying Equations 1 and 2.

The impact of vegetation on whole-lake flux was calculated as a percent difference via:

𝐼𝐼 =
𝐹𝐹𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – (𝑓𝑓𝑂𝑂𝑂𝑂 ∗ Ω)

𝑓𝑓𝑂𝑂𝑂𝑂 ∗ Ω
� (2)

where I represents the percent increase from differentiating between open water and emergent vegetation within 
lakes. I is sensitive only to the measured parameters R’, ALEV, and c, and independent of the absolute magnitudes 
of the fluxes or areas attributed to each lake zone.

Equations 1–2 were applied using the median values of R’ and fOW and the lake area-weighted mean ALEV. Median 
values were used due to the skewed distributions of R’ and fOW. The equations were also applied to the boot-
strapped confidence intervals of ALEV in order to estimate uncertainty.

3.  Results
3.1.  Inundation Patterns at the Landscape Scale

3.1.1.  Regional and Seasonal Inundation Characteristics

Significant open water, emergent vegetation, and wetland fractional areas are found in all study areas, vary 
seasonally as well as regionally, and are particularly extensive in the PAD and YF. The total area of the landscape 
covered by lake emergent vegetation (LEV) varies from 0.5% to 0.6% (CSD), 2.2% to 3.4% (CSB), 7.6% to 15.5% 
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(PAD), and 1.7% to 2.8% (YF) over the 2017–2019 observational period (Figure 2; Table 2). In comparison, 
wetland emergent vegetation (AWEV) covers ≤2.7% of the area in all sites (mean of 1.4%, Table 2). Most of the 
emergent vegetation is classified as either wet graminoid (WG, weighted mean of 69%) or shrub vegetation 
(WS, 29%), with wet forest comprising <1% of this area for all areas except YF, for which it covers a mean of 
5.9%. When only considering LEV that falls within a global data set lake (the double-counting correction), the 
graminoid fraction increases to 99.1% (GLOWABO) or 98.7% (HydroLakes), which provides further confidence 
that the remaining LEV is indeed littoral vegetation and not an adjacent, forested wetland, at least for large lakes 
in the global datasets. Virtually all detected emergent vegetation lies adjacent to shorelines, with <0.2% of their 
area occurring completely within a lake with no connectivity to non-island land. These patterns show that the 
dominant littoral vegetation type in the study areas is graminoids, which almost always occur at the interface 
between land and water.

In all applicable study areas, total inundation (open water plus emergent vegetation) is greater or equal in the 
early summer (June) than in late summer (August/September), likely due to snowmelt. In the PAD, this change 
is caused by decreased LEV, with emergent wetland vegetation remaining constant, implying that seasonal inun-
dation changes occurred in flood-tolerant eulittoral vegetation (Figure 2; Table 2). Thus, regional variations in 
emergent vegetation, as well as open water, are greater than seasonal/interannual variations within study areas.

3.1.2.  Validation of UAVSAR Classifier

The land cover classifier successfully retrieves the three broad classes of emergent vegetation. Based on visual 
inspection of the land cover maps, the most significant misclassification is evidenced by false detections of water 
in areas actually covered by dry graminoid vegetation (Figure 3e, top middle) and false detections of inundated 
vegetation in areas of forest. The most frequent misclassification occurs between Wet Shrub and Rough Water, 
although errors of omission and commission are roughly equal, implying a near-zero net effect on the landscape 
totals (Figure S.1 in Supporting Information S1). Any misclassification among the dry land classes does not 
affect our lake analysis, and misclassification between the flooded and dry classes is rare, as expected, given 
the sensitivity of SAR to water presence (Figure S.1 in Supporting Information S1). Prior to the quality control 
measures (Section 2.3.4), Cohen's kappa coefficients are 0.862 for the model used on the simpler CSD landscape 
and 0.824 for the model used for the remaining sites, implying good agreement with the validation data. Since 

Figure 2.  Significant lake emergent vegetation (LEV) is found in all study areas, varies seasonally as well as regionally, 
and is particularly extensive in the lowland PAD and YF. This chart shows landscape fractional areas of open water and 
LEV classes for the Yukon Flats (YF), Peace-Athabasca Delta (PAD), Canadian Shield—Daring Lake (CSD), and Canadian 
Shield—Baker Creek (CSB), derived from airborne UAVSAR. LEV is defined as emergent vegetation adjacent to open water, 
with remaining areas assigned to wetlands (WEV). Month and year of UAVSAR flight acquisitions appear in text above each 
column.
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the analysis only uses flooded classes connected to open water that could be validated by optical 
imagery, errors of commission (Figure S.1 in Supporting Information S1) represent an upper 
bound.

3.2.  Emergent Vegetation Extent

3.2.1.  Regional and Morphological Trends

Although useful for integrating all flux components, landscape-scale descriptors obscure the 
nuance of individual lake characteristics. Consequently, we also present results normalized by 
each lake's area and aggregated via weighted averaging (Table 2; Figure 4). With this normali-
zation, it is more apparent that emergent vegetation (ALEV) is quite prevalent in lakes, averaging 
16.2 [13.9–19.1]% across the four study areas, weighted by lake area. Again, coverage is espe-
cially extensive in the lowland PAD and YF (Figure 2), averaging 59 [50–68]% and 22 [20–25]%, 
respectively. ALEV in the more topographically constrained, colder, sparsely vegetated CSB and 
CSD areas averages 7.0 [4.7–11.5]% and 1.0 [0.8–1.2]%, respectively. The lowland sites, there-
fore, have the most ALEV, both as a percentage of total lake area as well as landscape area.

While emergent vegetation is observed in every size bin in every area, we find only a weak rela-
tionship between ALEV and lake area that holds for all study areas. The area bins comprising small 
to medium-sized lakes between 0.002 and 0.02 km 2 always contain the primary histogram peak, 
with the exception of the PAD, for which these bins contain the secondary peak (Figure 4b). In all 
regions except the PAD, the smallest observable lakes (≥250 m 2) have similar coverage to the larg-
est (>10 km 2), resulting in unimodal area-binned histograms, even within the confidence intervals 
(Figure 4). The drop in ALEV for small lakes is likely caused by mixed pixels in narrow littoral 
zones being detected as water. Even so, Pearson correlation is weak between log-transformed ALEV 
and lake area (r 2 = 0.124, p < 0.001, Figure 5), implying that the inverse relationship between the 
two variables is not consistent across sites. On an individual basis, the two Canadian Shield study 
areas have significant regression relationships (p < 0.001, Figure 5), with r 2 = 0.25 (CSB) and 
0.48 (CSD), likely explained by their simpler, bedrock-dominated landscapes.

3.2.2.  Seasonal Trends

Despite fluctuating water levels, the distribution of ALEV across lakes of varying areas remains 
largely similar across seasons and years (Figure S.3 in Supporting Information S1). In all study 
areas, there is a histogram peak at lakes with little or no emergent vegetation (Figure S.3a–S.3d 
in Supporting Information S1, leftmost bin), as many areas lack the necessary conditions to 
support emergent macrophytes. The histogram drops sharply with increasing ALEV coverage: 
extremely quickly in the sparsely-vegetated CSD, somewhat quickly in the more southern CSB, 
and gradually in YF. The negative-skewed PAD distribution (tail on left) is an anomaly with 
high-coverage lakes common. Accordingly, the area-weighted mean (58.9%) is barely greater 
than the arithmetic mean coverage (58.6%) in the PAD, unlike the rest of the study areas and 
the aggregated total, for which these values can differ by a factor of two (Table 2). There are 
also more lakes overall detected in the PAD during early summer (Figure S.3 in Supporting 
Information S1), likely because temporarily submerged macrophytes would be detected as open 
water and thus constitute lakes in our analysis. These effects are likely due to prevalence of 
shallow open water wetlands, which are ubiquitous in the delta and are included in our lake data 
set as long as some area of open water (> one pixel, or ∼30 m 2) is detected. Although there is 
little seasonal variance to the ALEV distribution, the corresponding methane fluxes may depend 
greatly on plant activity, which varies between seasons. To avoid including seasonal wetlands as 
lakes, we used only the late summer (low water season) land cover maps to calculate mean ALEV 
and have broken down available flux data by season. The temporal invariance of the ALEV histo-
grams provides further validation of the consistency of the classifier, and it shows how changes 
in ALEV are not relegated to the same small subset of lakes.Ta
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3.3.  Methane Fluxes From Emergent Macrophytes Versus Open Water

Field measurements confirm that methane fluxes per unit area from emergent macrophytes are consistently 
higher than open water, even within the same lake (Figure 6). Although macrophyte fluxes were only collected 
at five of the 15 visited PAD lakes, four have higher mean macrophyte values than open water, leading to a mean 
macrophyte: open water flux ratio of 2.3 (Kyzivat, Garcia Tigreros, et al., 2021). Given the small sample size, 
differences are not significant (u = 2.0, p = 0.19, n = 5) based on the non-parametric Mann-Whitney test. Strong 
variability in the measurement may also contribute, since these short-term measurements exclude ebullition and 
the other key episodic open water fluxes (ice-out flux, water column turnover fluxes) are accounted for afterward 
via a correction factor. Similarly, plants, as well as open water, can have pronounced diel and seasonal variability 
in their fluxes, and these measurements were all made during the day.

The fluxes obtained by literature synthesis (Table S.3 in Supporting Information S1) have an even more extreme 
median ratio of 8.8 (Figure 6; Figure 7, top histogram), with a significant difference between open water and 
vegetation (u = 1,800, p < 0.001, n = 47). Of the 56 paired vegetation versus open water measurements, all but 
eight have flux ratios >1, implying greater emissions from vegetated regions. The PAD and literature measure-
ments combined have a median flux ratio of 6.1, or 15.9 if only Arctic-boreal lakes are included. We use the 
former, smaller value, since it comes from a larger sample size, and multiply it by the ice-melt flux correction 

Figure 3.  Example L-band synthetic aperture radar (SAR) images of subsets within the four study areas (Column I. a–d, 
YF 6/2017, PAD 9/2019, CSD 9/2017, CSB 8/2018, respectively) and corresponding classification (Column II. e–h). SAR 
images are colourized by Freeman-Durden scattering mechanism (double bounce in red, primarily indicating emergent 
vegetation; volume scattering in green, primarily indicating leafy vegetation; and single bounce scattering in blue, primarily 
indicating bare ground, bedrock, and some types of trees) and are stretched identically, with visual adjustments for brightness 
and color saturation. In column II., only inundated classes are shown and are superimposed over a grayscale version of the 
color-infrared camera base map from Kyzivat et al. (2018), in which forests appear darker than grasslands or bedrock.

b) PAD 

c) CSD 

d) CSB 

f ) PAD

g) CSD 

h) CSB

e) YF a) YF 
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Figure 4.  Emergent vegetation (ALEV) is most prevalent in small to medium-sized lakes. Here, mean ALEV, in green, is calculated for logarithmic lake area bins for 
each region (a) and for all regions combined (b). Error bars give the 95% confidence interval for ALEV for all bins with >2 observations. The lake count in each bin is 
plotted in gray and shows that most observed lakes are much smaller than 1 km 2. Accordingly, bins with fewer lakes generally have greater uncertainty in ALEV, and the 
rightmost bins, which contain <10 lakes, have considerable uncertainty. For a version of this figure showing bin sums, rather than means, see Figure S.2 in Supporting 
Information S1.

Figure 5.  Scatter plot of lake area and emergent vegetation coverage (ALEV) for all 4,572 lakes by study area (a-d) and aggregated (e). There is only a weak relationship 
between the two log-transformed variables. The diagonal bottom-left boundary in most plots is caused by area quantization by pixilation; since ALEV is a fraction, the 
minimum possible ALEV corresponding to a one-pixel vegetated zone decreases as the denominator increases. Lakes with ALEV = 0 are not shown nor included in the 
regression and regression lines are only included for p < 0.001.
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factor to obtain 4.6, which is used for the subsequent sensitivity calculation (Table 3). Due to limited data, stud-
ies  from all seasons and measurement periods were used, and some only measured one or two of the emission 
pathways (see Section 2.3.7). The four studies that defined lake zones based on depth rather than vegetation 
yielded a median flux ratio of 15.8. Despite a limited and spatiotemporally uneven global sampling, lakes in our 
study areas and worldwide unequivocally trend toward higher emissions from emergent macrophyte environ-
ments than from open water.

3.4.  Sensitivity of Whole-Lake Methane Emissions to Inclusion of Vegetated Areas

By applying the median corrected macrophyte: open water ratio of 4.6 (Section  3.3) to our remotely sensed 
UAVSAR LEV maps (Figure 3), we estimate the relative importance of accounting for emergent vegetation in 
whole-lake methane flux estimates (Table 3). Assuming a lake area weighted average ALEV of 16.2 [13.9–19.1]% 
increases the overall methane emissions from the four study areas by 21 [18–25]% (Figure 7). Although the flux 
ratio R’ has variability, we have not included it within the bounds of the estimate, relying instead on the more 
robust measurement of variance of ALEV. Spatiotemporally, the impact ratio I varies from 4% to 321%, with the 
lower bound coming from CSD in September 2017 (where only ∼0.9% of lake areas contains emergent vegeta-
tion) and the upper bound from the PAD in June 2017 (∼66% coverage, Table 2). Although these are the most 
extreme values observed, these scenarios show that accounting for small, but numerous LEV zone areas signifi-
cantly raises whole-lake emissions estimates.

4.  Discussion and Conclusion
4.1.  Emergent Vegetation Coverage in Lakes

Littoral zones are often theorized to cover greater portions of small lakes 
than of large lakes (Bergström et al., 2007; Wetzel, 1990, 2001). It is logi-
cal that smaller lakes with larger perimeter: area ratios would be dominated 
by near-shore areas, which are overwhelmingly shallow. However, while our 
results generally show greater fractional emergent vegetation area (ALEV) in 
small and medium-sized lakes (Figure 4), there is weak correlation at best 
(Pearson r 2 = 0.124, p < 0.001; Figure 5). This discrepancy can likely be 
explained by LEV comprising only a portion of the littoral zone, as well as 
mixed pixels obscuring narrow littoral margins in small lakes. Bergstrӧm 
et  al.  (2007) similarly observed that medium-sized lakes (0.1–1  km 2) had 
the greatest ALEV of ∼11% on average for 50 Fennoscandian Shield lakes 

Figure 6.  Lake emergent vegetation (LEV) and shallow regions produce greater methane fluxes than open water zones and 
deep regions, respectively, based on the literature (a) and from field measurements in the Peace-Athabasca Delta in July and 
August 2019 (b). Green lines show the median, hinges are drawn at the lower and upper quartiles, and flyer bars give the 
extent of data not considered outliers, which are plotted as points. Note the different scales demonstrating much greater flux 
values (mg of CH4/day) from the literature (a) than in the PAD (b).

ALEV c R R’ I

16.2 [13.9–19.1]% 0.36 6.1 4.6 21 [18–25]%

Note. ALEV is area, with 95% confidence intervals, of lake emergent vegetation 
and is corrected for double-counting with wetlands by the scalar c. R is the 
median global vegetated: open water flux ratio obtained from the literature 
and is adjusted to R’ correct for unmeasured ice-melt fluxes. The summary 
statistic I represent the impacts of accounting for LEV in whole-lake methane 
flux estimates.

Table 3 
Parameters and Results of Sensitivity Calculation (Equations 1 and 2)
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in Finland, which, plotted as an area-binned histogram, also resembles an 
inverted V-shaped curve. Mäkelä et  al.  (2004), using the same data set, 
pointed out that large, lowland lakes had the largest total macrophyte cover-
age, also noting that area and pH only account for 15% variation in ALEV.

In comparison, the Canadian Shield areas we sampled contained the greatest 
ALEV in small-to-medium lakes (0.0001–0.002 km 2 in area), with values rang-
ing from 7.3 [4.5–10.7] % (CSD) to 55 [35–81] % (CSB). We also observe a 
large contribution to total ALEV from the large lakes (Figure S.2 in Support-
ing Information S1), underscoring the need not to discount them. Inciden-
tally, these lakes are under-represented in lake methane datasets (Deemer & 
Holgerson, 2021). The largest 100 lakes (area ≥0.9 km 2) comprise 62.7% of 
total lake area and 39.2% of total LEV area across all four study areas, and this 
trend holds across all study areas (Figure S.2 in Supporting Information S1). 
The observed region-specific dependence on lake area further highlights the 
need for remote sensing to estimate littoral or vegetated zone coverage as well 
as to identify the interface between wetlands and open waters in the context 
of aggregated methane emission estimates.

The ∼16% mean ALEV coverage we observe is greater than the globally-inclusive 
estimate of 7% (Duarte et al., 1986) and Southern Finland estimate of 5.2% 
(Bergstrӧm et al., 2007). Since the number is an intermediate average derived 
from much lower values on the Canadian Shield (1.0%, and 7.0% for CSD 
and CSB, respectively, Table 2) and much higher values for the PAD (59%) 
and YF (22%), it is highly sensitive to the choice of study areas and their 
relative sizes. Even though the relationship between coverage and lake area 
does not appear as simple as suggested by Duarte et al. (1986), their conclu-
sion that lake area is not a strong predictor of emergent macrophyte cover-
age is still supported. Although the Boreal–Arctic Wetland and Lake Data 
set (BAWLD; Olefeldt et al., 2021a, 2021b) does not explicitly map littoral 
vegetation, the authors defined all open-water ecosystems as lakes, which 
includes shallow open-water wetlands. As a result, their lake class is defined 
nearly identically to ours, and they cite similar reasons regarding the impor-
tance emergent macrophytes as controls on net emissions. Indeed, compar-
ison between datasets shows similar (ranging from 3% to 46% difference) 
lake coverage in each study area and an identical area-weighted mean over all 

study areas (16.6%, Table S.6 in Supporting Information S1). The roughly equivalent emergent vegetation and/
or wetland classes are 24% greater in BAWLD (3.8% areal coverage from UAVSAR, 4.7% from BAWLD), which 
indicates that some or all LEV is included within BAWLD wetlands. BAWLD therefore represents best practices 
not only in ensuring a consistent lake-wetland distinction, but also presumably in including LEV within a wetland 
class, where it can be assigned a more appropriate methane flux.

4.2.  Importance of Emergent Vegetation for Methane Upscaling

4.2.1.  Toward Improved Upscaling of Lake Methane Emissions

This broad-domain study supports previous studies demonstrating the importance of accounting for vegetated 
and/or littoral areas in upscaling lake methane flux estimates (Bergström et al., 2007; Casas-Ruiz et al., 2021; 
DelSontro, Beaulieu, & Downing, 2018; Juutinen et al., 2003; Kankaala et al., 2013; Natchimuthu et al., 2016; 
Smith & Lewis, 1992; Striegl & Michmerhuizen, 1998). However, in addition to the challenges of measuring 
wetland extent more generally (Melton et al., 2013), a knowledge gap remains about the distribution and area 
of lake littoral zones (Huttunen et al., 2003). Our airborne UAVSAR approach for detecting LEV has limited 
spatial coverage and is unsuitable for broader-scale studies. Satellite approaches, however, have good utility 
for pan-Arctic or global wetland mapping (Ghirardi et al., 2019; Hess et al., 1990; Nelson et al., 2006; Zhang 
et al., 2021) and are well suited for study of large lakes, which contribute most to total LEV area (Figure S.2 
in Supporting Information S1). These lakes are otherwise considered low methane emitters on a per-area basis 

Figure 7.  Plotting study lakes in a flux ratio-emergent vegetation fraction 
feature space shows that most emit more methane from lake emergent 
vegetation (LEV) than from open water on a per-area basis (shaded region), 
leading to an overall median flux ratio of 6.1. Studies that partitioned fluxes 
into shallow versus deep, rather than vegetated versus open water zones 
(triangular markers) are shown for reference but are not used for further 
analysis. The distributions of both variables are shown as histograms along 
the relevant axes. Vertical error bars show the temporal range in coverage for 
the field data (orange circles) and the estimated mapping uncertainty for the 
literature data (purple squares) and can extend to zero (beyond axis limits). 
For scale, the uppermost square data point in the figure (peat pond, Ontario, 
Canada, ALEV = 88%, R = 5.7) corresponds to a 113% increase in emissions 
compared to the no LEV zone case. Note the logarithmically-scaled x and y 
axes. For a version of this figure with contour lines for the impact I, see Figure 
S.4 in Supporting Information S1.
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(Holgerson & Raymond, 2016) and have little risk of being double-counted in wetland datasets, so they would be 
a good starting point for future studies. Incidentally, DelSontro, delGiorgio, and Prairie (2018) define an under-
estimation ratio between pelagic and littoral methane concentrations (roughly the inverse of I) and show that it 
approaches unity for larger lakes, although they do not calculate the impact of these lakes to total lake emissions. 
The upcoming NISAR satellite mission is likely to provide high-resolution, freely available global coverage of 
L-band SAR, which may facilitate similar analysis for ALEV over larger scales.

Unfortunately, our results do not reconcile the gap between modeled methane fluxes from bottom-up and 
top-down models (Saunois et al., 2020; Thornton et al., 2016). In fact, they suggest bottom-up fluxes are slightly 
greater than previously thought, which further widens the discrepancy. The most recent aquatic upscaling stud-
ies (Rosentreter et al., 2021; Saunois et al., 2020) and a recent wetland synthesis data set for modeling (Zhang 
et al., 2021) used a consistent lake mask when defining lake and wetland areas, and this careful lake masking 
has not significantly improved the discrepancy (Saunois et al., 2020). These masks either come from global lake 
datasets (HydroLakes, GLWD, GLOWABO), or the more recent global surface water explorer (GSW). Both 
GLOWABO and GSW were derived from 30 m resolution, optical Landsat satellite data, which is quite effective 
at detecting open water. It is unclear whether these methodologies include vegetation as part of lakes, although 
GLOWABO and HydroLakes show good agreement with our open water class (Table S.4 in Supporting Informa-
tion S1). Wetland detection is more challenging and hampered by scale disparities between the relevant satellite 
sensors and inconsistent wetland definitions between disciplines (Zhang et al., 2017a, 2021). Thus, the practice 
of using consistent open-water lake masks to differentiate between lakes and wetlands is a good one.

Our results show that even after correcting for double-counted wetlands, UAVSAR detects emergent vegetation in 
5.8% of lakes contained in global datasets. Whether through temporal change or dissimilar mapping methods, this 
discrepancy is large enough to have an impact on estimates of the lake contribution to the global methane budget. 
Equally important, but not demonstrated here, is accounting for the uniquely high emissions from non-vegetated 
lake littoral zones, which are less likely to be confused with wetlands, and are probably at least as extensive as 
LEV (Seekell et al., 2021). Non-vegetated littoral zones can also be high emitters, especially when within the 
reach of carbon-exuding roots and rhizomes (Bansal et al., 2020). Since mapped LEV falls within littoral zones 
by definition, it shares some of their properties, but our analysis does not attempt to separate these drivers. Even 
so, Jansen, Thornton, Cortés, et al. (2020) found no clear depth difference in the diffusive fluxes from two lakes 
in Stordalen Mire, Sweden, despite maximum depths of 5 and 7 m and a robust sampling strategy. However, ebul-
litive emissions from these same lakes showed a clear depth gradient (Wik et al., 2013). Our compiled synthesis 
data on depth, while limited, also shows no significant difference between deep and shallow emissions (Mann 
Whitney test, u = 10, p = 0.24, n = 6), highlighting the need for more reporting of fluxes from different pathways 
and depth zones.

Given that our LEV flux data includes all emission pathways in a variety of lake types, the derived flux ratios 
represent a combination of many correlated drivers, including shallowness, methane oxidation, variable inun-
dation, proximity to terrestrial inputs, and microbial community. In the context of deriving spatially explicit 
representations of methane emissions, it could be preferable to move away from using discrete land cover classes, 
and develop continuous representations of the processes that control methane production and rates of flux. 
These representations could better describe gradually-varying conditions, such as water table depth, the resulting 
concentration of oxygen in the subsurface, and the inclusion of new estimates of soil moisture, and they could 
improve estimates of methane emissions along hydrologic gradients.

4.2.2.  Limitations and Future Directions

Our 21% estimate for I (Equation 2), the percent increase due to including emergent vegetation in lake methane 
flux accounting, uses assumptions chosen to lead to the smallest possible value. Regardless, it is highly sensitive 
to the data-limited input parameters c and the flux ratio, which has a large variability that we have not accounted 
for. The double-counting correction factor c may suffer from lack of generality, since it was calculated only within 
the boundaries of our study regions using global datasets collected ∼20 years prior. It also assumes that LEV 
zones have similar areal emission to wetlands, which may not be valid. Clearly, more methane flux measurements 
in shallow or vegetated zones and estimates of total macrophyte coverage are needed (Bergström et al., 2007; 
Schmiedeskamp et al., 2021). While our approach for correcting for double counting is only based on lakes large 
enough to be included in global datasets, the small magnitude of c shows how easy it is to count wetlands as LEV. 
Without this correction factor, I would be more than doubled to 58%. Future work should look more generally at 
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the cause and magnitude of lake/wetland double counting (Thornton et al., 2016) and develop continuous metrics 
for methane emission habitats that do not rely on discrete land cover classes.

Our estimate for I may still be too high because our ALEV includes up to 2.6% emergent shrubs and trees, even 
after the double-counting correction (Table S.5 in Supporting Information S1). This woody vegetation lacks the 
aerenchyma tissue that allows most wetland plants to transport methane from the sediments. Recent work has 
shown the potential for microbes living inside trees to produce methane (Covey & Megonigal, 2019), although 
this effect is likely less than soil microbe production. Second, the relatively narrow swath width of UAVSAR 
causes large (and likely less-vegetated) lakes to be under-represented in the calculation of weighted mean ALEV. 
Adding to this effect is the use of the same vegetated: open water flux ratio for lakes of all sizes, when smaller 
lakes and ponds are known to be higher open-water methane emitters than large (Bastviken et al., 2004; Engram 
et al., 2020; Holgerson & Raymond, 2016; Michmerhuizen et al., 1996), probably because littoral zones (vegetated 
and unvegetated) cover most of their areas. Indeed, Kankaala et al. (2013) showed that the flux ratio increases 
with lake size. It follows that our concept of a vegetated: open water flux ratio is less useful for small lakes and 
would likely be even larger for the largest lakes, which are under-represented in our literature synthesis. Future 
studies could better quantify how this ratio varies based on lake area. Nevertheless, since the contribution to total 
ALEV from the small lakes is so slight (Figure S.2 in Supporting Information S1), they do not have a large negative 
impact on our estimate. Finally, the estimate compares to a hypothetical upscaling using solely open water fluxes, 
while in reality, some studies include open-water measurements from entire littoral zones. While many of the 
studies cited here used area-weighted approaches with regard to lake depth zones (DelSontro et al., 2016; Jansen, 
Thornton, Cortés, et al., 2020; Natchimuthu et al., 2016), they appear to be a minority and are not available on the 
global scale (Kuhn et al., 2021b; Wik, Thornton, et al., 2016).

Comparison of our sensitivity study with previous Arctic-boreal and global lake studies suggests that our find-
ing of a 21% increase in whole-lake methane flux is conservative. Using flux chamber measurements from two 
Swedish lakes, Natchimuthu et al. (2016) found that methane emissions from lake centers are 2.1 times less than 
whole-lake fluxes, although fluxes were not explicitly measured near lake macrophytes. Similarly, Kankaala 
et al. (2013) found that 74%–82% of diffusive and plant-mediated emissions in 12 Finnish lakes derived from 
littoral macrophyte stands comprising only 5% of their total area. These amounts correspond to a flux ratio of 
54–86, leading to an impact, I, on whole-lake fluxes between 270% and 430% greater than a case where open 
water fluxes were assumed throughout. Most recently, Desrosiers et al. (2022) found that the 26% of a boreal lake 
covered in macrophytes was responsible for 81% of its carbon emissions. The impact of considering the Typha 
latifolia stands alone can be calculated at 102%. Although focused only on extremely high-emitting lake and 
wetland thermokarst hot spots, Elder et al. (2021) conducted a study of remotely-sensed methane “hot spot” emis-
sions across a 70,000 km 2 Arctic-boreal domain and found an even greater disproportionality, where 0.005% of 
the domain was estimated to emit 0.3%–16.2% of the total. The higher reported flux ratios from lake studies can 
be partly attributed to area-weighted analyses including much larger, and thus lower-emitting per unit area, lakes 
than our airborne-based study. Yet, they also underscore the pitfalls of assigning higher areal fluxes to vegetated 
lake zones without ensuring these zones are not otherwise counted as wetlands.

Even when using best practices to avoid double-counting lakes with wetlands, the coarse resolution of global lake 
maps can still cause uncertainty in the precise location of shorelines. At the medium resolution of Landsat (30 m), 
the entire littoral zone could be “hidden” inside of mixed pixels at lake boundaries, even for large lakes, if they 
have steep margins. If only unmixed pixels are classified as lakes, it is unclear how near-shore land pixels would 
be treated, especially given that global wetland maps are typically made from coarser-resolution sensors (Zhang 
et  al.,  2021). Unfortunately, this hard-to-resolve small strip of land/water interface is precisely the area with 
the greatest impact on full-lake (DelSontro, delGiorgio, & Prairie, 2018; Thornton et al., 2016) and landscape 
(Baskaran et al., 2022) fluxes, so it cannot be rounded off. Furthermore, due to changing inundation and vegeta-
tion coverage, lakes can contain LEV even if attempts are made to exclude it, such as from static lake maps. Litto-
ral zones often have fluctuating inundation, and there are valid reasons to count them as either lakes or wetlands, 
even though current upscaling efforts require making this distinction. Just as with wetlands, lakes can be defined 
differently across disciplines. Although plant-mediated emissions are often reported in studies focused on lakes, 
upscaling studies frequently exclude vegetated areas from their lake estimates (Bastviken et al., 2011; Olefeldt 
et al., 2021a; Rosentreter et al., 2021; Wik et al., 2013), a best practice to avoid double-counting. This exclusion 
requires careful treatment of the fluxes from which “lake” estimates should be derived. Future work should 
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develop techniques that can more accurately measure littoral zone area (Seekell et al., 2021), produce consistent 
and methane-relevant lake versus wetland criteria from remote sensing (Olefeldt et al., 2021a), and make use of 
temporally-dynamic inundation maps (Pekel et al., 2016; Zhang et al., 2021) for both wetlands and lakes.

Finally, since ebullition is under-represented in the synthesis data set and not present in the field data set, there 
may be biases present due to its episodic temporal pattern. We would expect a positive bias to R, since there 
is evidence that both diffusion and porewater CH4 concentrations are reduced when there is an available plant 
pathway (Bansal et  al.,  2020). If this trend holds for ebullition as well, then ebullition would be greater in 
non-vegetated zones. Even so, of the 10 flux ratios that include ebullition among the measured pathways and use 
zones based on vegetation presence/absence, the median ratio is 6.5 (Table S.3 in Supporting Information S1), 
which hardly differs from the full data set median of 6.1 (unpaired Mann-Whitney u = 1,600; p = 0.052, n = 13 
and 39). Similarly, the use of a correction factor to compensate for missing ice-out flux measurements may be too 
presumptive. Jammet et al. (2015) measured large spring fluxes in a very shallow peatland lake (<2 m), which 
suggests that methane accumulates in the sediments as well as in the water column over winter, and both shallow 
and deep areas would contribute to the spring efflux of CH4. Further research is necessary to investigate how 
the flux ratio might change based on seasonality and pathway. In the absence of robust flux ratio data collected 
separately for each pathway, we do not attempt to correct for under-reported ebullition measurements.

Estimating Arctic-boreal lake methane emissions is constrained by limited data and reliance on assumptions 
such as discrete land cover classes. As noted by Saunois et  al.  (2020), methane upscaling can be improved 
by considering spatiotemporal variability and increasing sampling efforts in lakes with diverse morphologies 
and environmental conditions. Previous estimates have calculated a high bias caused by most measurements 
being made during waking hours (Sieczko et al., 2020) or summertime sampling (Denfeld et al., 2018; Jansen, 
Thornton, Wik, et al., 2020; Wik, Varner, et al., 2016); or from static inundation maps (Hondula et al., 2021). 
Others have shown low biases from insufficient seasonal (Wik, Thornton, et al., 2016), or spatial (Desrosiers 
et al., 2022; Natchimuthu et al., 2016; Wik, Thornton, et al., 2016) sampling. This study also suggests a low 
bias from not separately accounting for LEV, on par with the contribution of under-sampled ice melt flux, which 
ranges from 23% to 27%. Even so, inadequate and geographically-uneven sampling of the world's >117 million 
lakes (Verpoorter et al., 2014) is likely the greatest source of uncertainty in lake upscaling. In the absence of 
sufficient data, upscaling estimates should make use of available quantitative corrections and continue to find 
and remediate sampling biases.

5.  Conclusion
Lake emergent vegetation (LEV) is ubiquitous in Northern lakes but limited data prohibit its inclusion in upscaling 
lake methane emissions. We provide a first assessment of its prevalence across 4,572 lakes in four Arctic-boreal 
regions using airborne UAVSAR mapping and find that they cover 16.2 [13.9–19.1]% of Arctic-boreal lakes on 
average, a higher amount than other estimates, but with strong differences between study areas. LEV is greatest 
in lowland riverine areas, where changing water levels cause seasonal variability. Consistent with previous stud-
ies, we find that it is more common in small than large lakes, but this relationship is weak and varies regionally. 
Accounting for LEV, using a synthesis of paired open water and LEV field measurements of methane flux, leads 
to an upscaling estimate 21 [18–25]% greater than an estimate that assigns the same open water flux to the entire 
lake. We conclude that multi-temporal remote sensing of littoral zones, based on vegetation or otherwise, and 
collection of flux data from all parts of a lake are necessary for accurate upscaling of lake methane emissions. 
Future studies should continue using consistent definitions to separate lakes and wetlands, incorporate temporal 
wetland and lake change into analyses, remain vigilant against double counting with wetlands, and use multiple 
lake zones or continuous metrics for upscaling.

Data Availability Statement
UAVSAR data used for this study can be downloaded at https://uavsar.jpl.nasa.gov/cgi-bin/data.pl. The deriva-
tive land cover maps and lake emergent vegetation shapefiles can be found at the accompanying data publica-
tion: https://doi.org/10.3334/ORNLDAAC/1883. Methane flux data from the PAD can be found at https://doi.
org/10.6073/pasta/1e0cadadd8024c8fabc692ee21dc1f57. All MATLAB, Python and shell scripts used in data 
processing can be found at https://doi.org/10.5281/zenodo.5974901 and https://doi.org/10.5281/zenodo.5974915.
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